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PREFACE 

AUTHORIZATION 

This study Is part of the prog rar: authorized in 
Bureau of Ordnance Letter NP9/A9(re3) of January 9, 1943, 
as Naval  Proving Ground Research Project APL-2. 

OBJECT 

To provide a rational mechanical explanation of 
recent precisely determined laws of penetration. 

SuTT'ARY 

Certain experimental laws of penetration of homo- 
geneous armor at 0° obliquity are presented, and theoretical 
interpretations are derived.  In particular: 

1. In the penetration of thick plates (e/d>0.3) 
the quantity mV^/d-^ is a linear function of e/d.  This law is 
explained by Bethe's expanding-hole theory, modified to take™--.: 
account of the formation of petals on the back of the plate. 

2. In the penetration of thick plates, if the 
residual     enerSV    En     i □     -nln+ + l=,r\     □ a     a     -f»nnn + -i nn     nf     +.Vi Q     otrilrinrr 

energy SSJ a straight line results with a slope of about one.,, 
Eor a thick plate the slope of this line is less than unity; 
trials against a series of progressively thinner plates give 
slopes increasing as e/d decreases.  These observations are 
explained when one considers the dynamic nature of projectile 
penetration; if the force with which the plate resists the 
projectile increases linearly with the projectile energy, the 
observed results follow.  The slopes may be calculated quan- 
titatively by an extension of Robertson's version of the 
Poncelet-Norin theory. 

3. In the penetration of thin plates (e/d<0.3), the 
predominant mechanism of failure is the bending back of plate 
material around the hole, comparable to the bending of the 
petals on the back of a thicker plate.  This mechanism leads 
to a quadratic variation of mv"L2/a3 with e/d, which is in fair 
agreement with experiment.  In this thin-plate theory, stretcn- 
ing and dishing are not included; they are relatively unimportv 
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r 8.u "tij.e upper end of the tnin plats .range, but contribute the 
bulk of the energy absorption in the thinnest plates, which 
lack the stiffness to absorb much energy by bending. 
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' X 

I   INTRODUCTION. 

The experimental and theoretical study of projectile 
impact is authorized as Naval Proving GroundResearch Project 
No. APL-2 in Bureau of Ordnance letter NFS/Ay (Re3) of January 
9, 1943. 

A complete general theory of penetration would enable 
no     ■(-/-,    nHnnoo    +.h a    mnct    rlpoirnhlp     cshflTlfiH     nf     HflT)    find      TITO IfiCtils 
IJ.>~J      uu     uiiuLiu w      uii v     i—iw kj w     ^vi.ji.i.iiwi.u      u*&w'^"*"^      ~-~       '~'~~X'     ™ *""—      J," — ~ tJ ~  ~   '  

without laborious trial and error, to decide the optimum thick- 
ness and hardness of chill in Class A plate, and in general 
provide a guiding framework within which experimentation could 
be carried" on with the greatest promise of success and with a 
minimum waste of effort. 

It cannot be said that an adequate general theory 
of penetration is available, nor is there likely to be for 
some time' nevertheless the theorv ^resented in the nresent 
report represents a considerable advance over previous results 
in this field, being in better agreement with a wider range 
of more precise experimental results than are any known earlier 
theories. Tore refined methods of analysis are projected for 
the future, which should yield even more satisfactory results. 

Experimental study of projectile impacts has 
yielded fairly complete information upon two points, namely 
fa )    "hh «=    wav    "in   w'nif.h    t.h«    1 imit,    pn^Tcv   f nr    firvnrnl fit P>   TiPnfit.r-ptinn 

(the Navy limit) varies with plate thickness, and (b) the 
way in which the residual energy after a complete penetration 
depends upon the striking energy. A discussion of the experi- 
mental results is presented in Appendix A.  The particular 
experimental results applicable to this report are shown in 
Figures 1, 2 and 3; special points in connection with theses 
figures will be discussed as they arise in the theory. 

The first observation arising from an inspection 
of Figure 1 is that in the range 0.2<e/d<1.0, the limit 
energy (or specific limit energy - see Appendix A) is a 
linear function of e/d.  In reference (1) a theory of pene- 
tration is worked out essentially as follows:  Two states 
of the plate are considered - first, the plate is intact, and 
second it has a hole in it.  It is assumed as a first approxi- 
mation that the energy expended by the projectile in making 
the hole is independent of the precise details of the process. 
It is therefore supposed that a small hole of radius a exists 
through the plate; this hole is expanded to a radius b by 
internal hydrostatic pressure, and the work required for the 
expansion is calculated.  The limit of the work required is 
found as a approaches zero (no hole through the plate), and b 
approaches the radius r0 of the projectile.  The work found 
in this way is assumed to be equal to the limit emr^y requir-iP 
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for a projectile of radius r0 just to pass through the plate. 
The result is 

4 (l/2)mVL
2 = 2fryr0

2e       (1) 

:
J       where m Is the projectile mass, V, its limit velocity, Y 

the yield-stress of the plate material, and e_ the plate 
thictaess.  To express this formula in terms of what may 
be called the specific limit energy*, equation (1) may be 
divided by 2.-V2, which yields 

mV_2/d3 = TC Y e/d,    . ■■       (2) 

where d is the  projectile diameter.     On this  theory,   then, 
the   specific limit  energy is proportional to  o/d;   inspection 
of  Fig.   1  shows,  however,   that the  linear  portion of  the graph 
does not pass through the  origin,  but  intersects the e/d  axis 
at  e/d =  0.132,   the equation of  this  portion of the  graph 
being 

23                                 Ä 
^■rL /dJ - 27.69 x 10°(e/d - 0.132),     (3) 

.        where the specific limit energy is in ft.-poundals/ft.* 
_ - '     The discrepancy between equations (2) and (3) can be cleared 
r       up by modifying the theory of reference (1) to take accourt 

of end effects - specifically, the opening out of petals on 
the back of the plate. 

While there is certainly friction between pro- 
jectile and plate, the friction is not very great, as is 
evidenced, for example, by the continued spin of the projectile 
during and after impact. As a first approximation it is there- 
fore assumed that the force between the plate and projectile 
is everywhere normal to the surface of the projectile. 

In the initial stages of penetration (Pig. K)  the 
forces exerted on the plate-material by the projectile have 
both forward and lateral components.  Because of the "rigidity*' 
of the plate the forward motion of the plate material is in- 
hibited, and the material is squeezed out laterally and 
thickened as shown in the figure, the displacements being 
approximately the same as in the thin plate theory of reference 
(1),  This behavior will continue until the nose of the pro- 
jectile has penetrated far enough so that the "rigidity" of 
the material still ahead of the projectile is insufficient 

/=      to prevent bulging on the back,of the plate.  As the back 

** 
See Appendix A, p.24. 

The term rigidity is used to imply the resistance of the 
plate (or parts of it) to bonding, as opposed to resistance 
to other types of deformation. 
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bulges, material in the interior of the plate will be able 
to move forward as well as laterally, the displacements of 
this material being again approximately the same as in the 
thin plate theory of reference (a).  In contrast, the material 
on the back of the plate will crack across the bulge and open 
out in petals (Fig. 5) a type of failure distinct in nature 
from the expanding-hcle mechanism of Bethe. 

The "rigidity" of the plate material ahead of the 
nose of the projectile will depend upon its thickness; when 
the nose roaches a certain distance from the back of the plate, 
bulging of the plate will set in and the transition from 
Bathe's mechanism to petal formation will begin.  Vvith a given 
caliber and shape of projectile, the distance between pro- 
jectile nose and back of plate at which petalling sets in will 
presumably be independent of the plate thickness.  Thus, a 
plate may be divided into two zones - a front zone in which 
the mechanism of failure is essentially that of Bethe, and a 
back zone in which the material fails by j>etailing» As one 
goes from thick plate to thinner plate, the thickness of the 
back zone remains constant, while the front zone gets thinner 
and thinner and disappears. 

In Part II the thick plate case will be discussed 
quantitatively, and an equation of the same form as equation 
(3) will be derived for the specific limit energy.  In Part 
IV the thin plate case (for plates so thin that Bethe*s 
mechanism does not occur at all) will be taken up; it will 
bo shown that equation (3) does not apply in this range of 
e/d, and the appropriate equation for thin plates will be 
derived and compared with the data of ."Figure 2. 

It will be noted that the theory of Part II (lead- 
ing to an equation of the form of equation {')))   takes no 
account of dynamic effects in the penetration.  In reference 
(2), E. ?, Robertson presents a modified form of the Ponce- 
let-l.corin theory, and shows that it leads to a relation be- 
tween the residual energy after penetration and the striking 
energy of the form 

■^v, = 3(H-, _ v   ) 11 \ 

where  ER is the residual   energy,   33 the  striking  energy, 
SL  the  limit  energy,   and S is a  constant,   the value  of S 
depending  upon the  value  of   e/d.     This   is  a well known law 
of penetration,  much  used  In limit determinations.     Varia- 
tions  of  equation   (4)  are  often  used in calculation -  e.g., 
Pig.   3  is a  plot  of mVR

d/e vs.  mVL
2/e,,the actual plate 

thickness at  the  impact  being  used for the  corresponding 
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plotted point.  This procedure tends to smooth out the varia- 
tions in plate thickness encountered from round to round; this 
point is discussed further in Appendix A. 

In Robertson's theory it is supposed that the pro- 
jectile must not only overcome the cohesion of the plate 
material, but must also set the plate material in motion with 
a sufficient velocity to get it out of the path of the advanc- 
ing projectile.  On this theory the kinetic energy which must 
be imparted to the plate material is the determining f^ctoi' in 
fixing the slope S in equation (4), and should have an effect 
upon the variation of the specific, limit energy with o/d. 
A .-..r-, A 111-< ■(-    fV.inV»<>.   T-T ^ +■ -*,-.       u -; ™u ,-, -~    ,-. 4- -v, • ■u -; v-, ,..   ,,-.-. i ~ ^ -; ■+- A ,.. r~.   ,,.,-;-! i    ■w „ jn.f^ci-Lij.o u    uitxujxuj.    piaous,    uiguui'    f3Ui"±fi.iuaj    vtj.uuiijj.ua    VV_L_L_L    IC 

necessary, so the dynamic energy required should be greater, 
and departures from the line of equation (3) should be expected 
if the magnitude of the dynamic energy is significant.  In 
qualitative agreement with this, it will be observed that the 
experimental points in Fig. 1 shew a tendency to fall above the 
straight line for values of o/d greater than 1. 

It has been objected that the work done in setting 
uiiu    jjj„a.uvi   juo. u ü J. J. cu.    xii   JUU U4. uu    nil     uc   ruüuvcjcu,    ti ö    UIJ. u   £,1110 on; 

energy produced in the plate will be utilized In expanding the 
projectile hole, so that no net effect will result from the- 
fact that the penetration of a projectile is dynamic, and not 
static. However, in sections 6 and 15 of reference (I) a suf- 
ficient analysis of this situation is given to Indicate that 
an increase in pressure on the ogive should result from the 
dynamic effects, with a consequent increase in the limit energy 
From this analysis it appears that the inertia in the elastic 
part of the plate is sufficient to prevent a reduction in 
pressure on the projectile until the bourrelet has passed the 
point in question in the plate. 

As a matter of fact, the experiments described in 
reference (3) show  that the plate will vibrate violently 
during impact, and attempts to find the force-curve for pro- 
jectiles by spark photographs taken during impact (reference 
(4)) snow that the projectile may experience violent longi- 
dutinal oscillations.  If'this is the case, the pressure 
between ogive and plate-material will oscillate rapidly, 
and any analysis of the mechanism of impact which omits 
consideration of these oscillations will necessarily be par- 
tial and incomplete.  Part III of this report will be devoted 
to an analysis of the dynamic effects during penetration, 
along the lines laid down by .Robertson. 

L  - 
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Figure  4- 
An £ar/y  Stage in the Penetration 

of a Thick P/a-te 

Figure   5 

A Lafe?   Stage in the Penetration 
of a   Thick Plate: 



II     MODIFICATION OF BBTHS' 3 TH30RY TO INCLUDE 
PETAL!INC. 

The folding' back of the petals may bo considered 
as the bonding back of a collection of u^rs by the advancing 
projectile, 

^ j        .. Consider a bar of thickness 
.„jj\   ix,     / \ t.. bent with.out buckling 

L*j* N. /     > through an angle ij.',   the 
•r    j /■''  >v   y/ radius of the inside of the 

I    |  /      ^ / bend being r.  If the inside 
,—£-—-!--''    ^> of the bar does not buckle, 
j ,   I      ../'' no extension of the inside 
j -    j   ^/y,;!, occurs in bending.  The 
'—T 1 —"— /-.—■—  extension of the outer sur- 
T    ■   / face is  (r + t )>f -  r <f = t^ . 

The; moan extension is I'l/'S^ 
ti/;, as the average over the 
bar is linear.  The work of 

bending is obtained by multiplying the extension by the cross- 
section A and by the yield stress Y: 

W = (1/2) t^A Y    .......       (5) 

The sane result is obtained regardless of whether or not 
hun'-'l injj   T «    «ssiimnrl . 

Observation of the petals on the back of a plate 
shov.-s that they are bent back through an angle of sone 60°, 
along a circonference roughly twice that of the projectile 
hole.  To calculate the work done in folding back the petals 
on their bases,  4 nrQt is substituted for A in equation (5), 
and 7ty'3 replaces y'-/: 

vVp = (t/2-7r/3) (4/vr0t)Y 

or 
T'kp = 2nj(n.T0t

2/3))     .......     (6) 

where rQ is the radius of the projectile at the bourrolet, 
Th .'■■.    17-irjlf1     cT.T'pQra    "in    Pdnnt.'nn     (i v I    mmr   r\ i -f f r> i™    «Arnrtuh a t.    frni 

J. J- v-> J^l 

that used in Bethc's formula (equation (1)), although hard- 
ross surveys around impact holes indicate that the difference 
should be snail . the v/ork hardening being about the same at 
the reels of  +hr- r><-it--"i..e p\^  through the depth of the plate. 

As suggested in the introduction the penetration 1ü 
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considered to follow Bctnc's mocnanism up to tae poim ax, 
which potalling sets in, the work done in this part of the 
penetration being 

WT, = 2TVVT»_2^ _ +_\ 17) 

This work is combined with that calculated by conation (6) 
to get the total amount of work done in penetrating the plate, 
which should ooual the limit energy: 

EL = 27V^0
2
(G - t) - 27YY(nr0t

2/3 (3) 

To make further progress, t_ must be evaluated.  It is supposed 
that for a given size of projectile t is constant over the 
range of e/d for which equation (3) Holds.  Furthermore, the 
basic assumption underlying the analysis of penetration data 
by means of the F-cocfficient is that if equation (3) (or any 
similar equation) holds for a given 3" projectile, it will 
also hold for a similar projectile of any other caliber.  On 
this basis one may reason that t must be proportional to 
*"0- - i.e., must be the same fraction of r0 for 3" projectiles 
as for 14" projectiles.  It is therefore supposed that 

t = (3/7T) kr0,     .......        (9) 

where k is arbitrary, and the factor 3/Vr is introduced merely 
to simplify the algebraic manipulations." Substitution from 
equation (9) in equation (8) yields 

\ =  27tY[r0
2e - (3k/7r)r03 + ( TT/3 ) (9k2/> 2)rQ

3 ] 

or 

» 2 7tY[r0 e - (3/zr )Vk(l -k)J ....       (10) 

The quantity k is of course positive, and to agree with equation 
(3) the quantity k (1 - k) must also be positive, so that" 
0<k<l.  If the plate fails at the back in the easiest way pos- 
sible -- i.e., so as to absorb minimum energy from the pro- 
jectile — k(l - k) must be a maximum so that k = 1/2.  In 
this case 

t = 3 r0/2/v        (11) 

For  2 rQ  =  d -  3",   t  -   0:7;   actual  petals appear  to be  nearer 
j.      uiü^j...  « u    Uiua    ucoo.      ii    urns   vaiue   ui    u   irum  equation   (u. ) 
is substituted in equation (10), the limit energy is found to be 

%ZJ)Q.  one 



EL =  27XY  (ro2e  ~  3rn
3A'T) 

or 

\ =   (ni/2)   d2   (e  -  d 3/3/T)     (12) 

Prom this  the   specific   limit  energy  is found to be 

mVL
2/d3  = 7TY(e/d  -  3/8TT)        ...... (13) 

This line   intercepts  the  e/d  axis at  3/Ö7T,   or 0.119;   the 
line of equation  (3)   intercepts  the   e/d axis at-0.132,   so 
equation  (13)   gives an  intercept  about .lOfo too low.     The  agree- 
ment   is  satisfactory,   considering the rough methods  used  in 
calculating the  pete.lling energy.     A more refined treatment   of 
retailing  is projected for   the  future.     The   question of  the 
yield stress will  be discussed latsr in this paper. 

Ill       DYNAMIC  ^FPECTS   IN -Jtl-'OR  ^ENETRATIOIT. 

In reference   (2) H.  ?.  Robertson has shown that a 
law of resistance  of  the Poncelet-Aorin form leads  to  an 
equation for the residual  energy of the form of equation  (4). 
In this   section Robertson's  theory will  be  developed further 
XIJ   tl    ± <JI"IU    auiutiuic    lur    auLicrnjal    I,CXüU±QU4.VJU. 

Suppose a projectile pene- 
i ""^"*""--^-^- trating a target - consider 
K-—'='  >j first a case where the bour- 
! j relet has entered the target 
■ \ Let the depth of penetration 

.^   -| v  _ be x, and the cross-sectioi 

j|   ^     "'^0>~  t~?A*S     of tlie Pr°Jectils be Ao ■ 

 '—T, 

 ~%d(- j H-X\c j n^0
2 •     In advancing a 

_.,.  -ify ±  ' _ J _ JS^xl distance  dx,   the  pro je: |   _.,.  -i/v' -|_/- -N**—<• distance  dx,   the  projectile 
will  cisplace directly a 

\ \ ■  i volume of material  dV = 
•  1 j A0dx.     Work will be done   en 

w~~. x ^1/ 'fi- this material   in disrupting 
i                *'*'  ; it,   and  in setting  it   in 

1   "~v~^-~'~  motion with a   speed   suffi- 
cient  to displace  it  frcm 

the  path of  the projectile.     This directly displaced material 
will  in turn  set  other plate material   in motion,   - a  point to 
wiiiuu  've   nil  iBuuin is. uci.     J.J- :-   J.O   i^ic   UCI±O-J-UJ   oi   TÄU6   i/arg ■■ ■., 
mptp-rial   and v  '   t^e m-^.:.   v^A^^^   ox   '«he  d^ r°c+dv-d~ '  "A c--d 
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material,   the work dene  on the projectile  in advancing a 
di steineG nx 'will  be  of  the form 

flE -   -[a  AY +   (i/2)(^'dV)v0
?2]   ,    .... (l.\) 

where a--a.sximi<*<l_  constant and called by P.o'oertson the "shatter 
coefficient1'---- it; of the nature of a yield stress.  The re- 
sistance fur-Cti-uii is than of the form 

ds/dx -  ..A0i'a + (1/2 )}o'v0' )    ....      (15) 

In the earlier and later stages of the penetration the cross- 
section (the projection of the area of ogive in contact with 
the plaue) vn.ll  not be t.he full cress-section of the pA 
in the early stages i~ will depend only upon x, while when the 
nose emerges from the back the cross-section depends not only 
upon x, but also upon the plate-thickness e.  Thus a more 
general foru of the resistance function would be 

dS/dx = -A(x,e)(a +(l/2) c\Q'
2) t   .,..'      (16) 

where A(x.e) is the variable cross-section.- 

Let du be the mean displacement of the plate 
material displaced \^en  the projectile advances the infini- 
tesimal dis^rrce dx»  The volume of displaced material is 
A(x,e)dx, ar^ "h>^ Ti^ + .^ri0] ^ displaced outward through an 
area equal to the lateral (surface) area of the embedded por- 
tion of the ogive, which area may be designated by L(x,e). 
Therefore, since L(x,e)du = A(x,e)dx, 

so that 

and 

or 

whoj_\.. 

du/dx = A(x,e)/L(x,e), 

^r0 /v - AU,e]/Hx,e]        .... l±7 

TT 2  = v' (x, e )   v2 .... (19) 

-s/V T a 1 = T " (-/ P > /T I T- p '?< 

!n the early stages of the penetration, when only the end of 
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the  cose  is  embedded,-v"will  be  fairly large,   approximating 
1 for blunt projectiles,,   and  smaller  for more pointed pro- 
jectiles.     As  -.-.lie nose  of   the  projectile  emerges iron the  back 
of  the  plate /mil iahe  sirellor and  smaller  values,   reaching  - 
zero  as  the   nourrel^t  clears  the  plate.     i-Ji approximati m  to  the 
mean value  cdh-'through  the  plate -will be 'hie   square  of  the 
ratio  of  the  lateral  area  oi'   the   entire  ogive to  the   cross- 
section of  the  projectile;   the area of  the  ogive  is  calcula^d 
as  shown  in Appendix 3,     The average /is then 

, .  ,  . 2 
(20} 

If nlate a.nd projectile are of the sane material, as is 
usually the case for major caliber projectiles, /-' = P. 
Por the projectile, tie mass may be represented by 

ni = 7t"r0";\ö(    • •  ^!) 

which defines )-,,   the "effective length" of the projectile; 
h will usually be different from the actual length, Venation 
(21.) is solved for p, and the result substituted in equation 
(16), together with the substitution for vQ*2 from equations 
(13) and (20), yielding 

r 
dE/dx -- -A(x,e)ja + (1/2) (ra/^r^A) 'Ph^ j .. (22) 

or 

dZ/dx = -A(x,o)(a + bQE)  ....... (23) 

where  E = mV /2 and bQ = "/0/;(T0'K 

Equation (23) is easily solved by separation of variables: 

d2/(a + bQE) = -A(x,e)dx, 
/3C 

(l/bQ)   In   (a  +   b0E)   ■■*     -  V   A(x,e)dx  +   const. 
)o 

For     x =  0,  S - Eg,   the  striking  energy,   so  the constant  is 
(l/b0)   In   (a  +  b0p,h „     Substitution and transposition  of the. 
c o ii s t a n t yield s 

M m/Pl.'PP V-l A<*>e 
r, 

)dx 
\, a +  b0Eq / \ V   '• ^ ■ "o-s 

Let the projectile pass complete v t.v..::--v;n ^he pint? 
r 

^(x.ejdx = VQ, 

n 



the volume of the hole through the plate, which is '/rr e, and 

±-  = iip, the re wilual energy.. 
mi us |i 

-' a + b E~ \ 
1:,] i ^R 1 ^  -h Y 

Taking auti-iogarit'hma, 

a + hQl,R  = (a + bcE3) exp(-b0vo) , ...        1^1 

Thus, 

\  - -a/b0 + [l/b0)(a + b0Es) exp (->0VA) • •  (25) 

When the projectile strikes with just the limit energy 5k , 
the residual energy is zero, so that equation [21+)   becomes 

a = (a + bQEL) exp(-b0V0)i .... (24a) 

Substitution of  this  value  of a  in equation  (25)  yields 

R w--f\   ^olj/-'<' M^y - J^I   .... \^o; 

This equation is essentially that obtained by Robertson in 
reference (2), and is of the same form as equation [!+), as 
desired. However, before introducing any numberical re- 
sults certain corrections need to be made. 

As previously noted, the projectile must displace 
material not only of the volume V of the hole througn the 
nlate, but also surrounding material out to seme radius r, , 
which is taken provisionally as the radius of the plastic 
region in the plate.; at this point the displacements will 
be small, as ~chey muse; correspond to strains within the 
elastic limit.  In Bstke's thin--plate theory, in the static 
case, the radius of the plastic region is about 3«3rn 

Bethe points out that the plastic region will be semewbit 
smaller in dynamic penetrations, but does not say how lc'.eb . 
It will be assume! h:meiu that r-, - 37- J  ppe volume Y-, 

previously used is therefore to be replaced by (3) V ■.- ov 
. , , "       v    o       ' o' 

and e/A in equation (2öj(and related pr^4": ^.'^ ' is to be 
multiplied by 9. 
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These factors represent one element of the necessary 
corrections, modifying the equations insofar as they involve 
the volume of displaced plate material.  The mean velocity 
of this larger volume of displaced material need not bear 
the same relation to the projectile velocity as previously 
found.  In default of more exact knowledge, it is supposed 
that the displacement of any portion of the plate material 
falls off linearly with distance of its initial position 
from the axis of the projectile-hole.  Thus, if uQ is the 
displacement of a point initially on the axis (r = o), that 
of a point at r^ = 3rQ is zero, and for intermediate posi- 
tions the displacement is 

u = u0 (r-L - r)/r-L     (2?) 

Averaging over the entire volume, which is symmetrical ahout 
the axis of the projectile hole, it is found that 

r1 r1 
I       2 / 

._       -    \      11    .   OTT fA~n I      \ '. 
u \        fcM"V    ' 

./ 0 ^ 0 

with the result 

"TT      2 
u~- = u

0'"/6 .....        Uy) 

The velocity being proportional to the displacement, 

' 2      ' 2 ' ' v   = VQ /6, so that one should use not yQt   but YQ/6. 

When this substitution is made, together with 9e/X for 
e/\  i equation (26) becomes 

3R = exp(-3^'e/2A)(33 - EjJ     (30) 

There are two obvious criticisms of this calcula- 
tion.  The precise law of fall-off of displacement may not 
be very much like that represented by equation (27). 
Furthermore, it is to be expected that the law would vary 
'with depth through the plate, as should also the radius of 
the plastically worked region, due to the change in mechanism 
fron piercing to petalling.  The calculation is not applicable 
to thin plates, for which dishing is important. 

The most accurately determined slope available for 
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a thick plats at 0° obliquity is for the 3-inch A.P. I'-79 
projectile vs. 4-inch Class B plate, six points giving a 
slope of 0.93.  For the projectile in question, the actual 
diameter is 2V99, and the ogival radius is 5 ■; insertion 
of these values in equation (1) of Appandix B yields a 
lateral area of ogive of 24.30 sq.in.  The cross-section of 
the projectile is 7.02 sq.in. so that 

Y0 =   (-o/L0)_2 = (7.02/24.SO)2 = 0.0301. 

For a 15-lb. projectile, X= 7.5 in.  Thus, against a 4-inch 
plate 

3^e/2X= 3(0.0301)(4)/2(7.5) = 0.0637- 

The corresponding slope is therefore 0.934, which agrees with 
the experimental value within the errors of observation. 

Other values of the slope have not been determined 
with equal precision. However, it has been well established 
by firing at the Armor and Projectile Laboratory that the 
slope increases with decreasing e/d, which is in accord with 
equation (30). As a matter of fact, equation (30) predicts 
a slope approaching unity as e_ approaches zero, whereas for 
thin plate (e/d<0„3, say) the slope is greater than one. 
This higher value of the slope for thin plate is associated 
with the marked dishing which occurs around the impact hole, 
with which the present theory is not designed to deal. 

In view of the corrections to equation (26), 
corresponding changes will be required in equation (23) 
and the other eouations derived from it.  Because of the 
greater volume of material actually displaced, b^ should 
be replaced by a larger b, 

b - 9 b0, 

or  in general,   b  =   U^/r^b   .     At  the   same time,   a  smaller 
>''should be  used  in calculating b,    Y = ">^/6   ,   i.e., 

b .  9(y/Trr0
2\)  = 3^'/2 7Tr0

2X ..... (3D 

When this  expression for  b_ is   introduced  into  equation   (24a) , 

a =   (a + b 3L)   oxp(~3?£e/2)0 , 

SL =   (a/b) jexp(3?£e/2X)   -lj   ...... (32) 
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Su.perficio.lly this eQUQtion bears no reseiiulance  vO   WIG 
desired form,   equation  (3),   but  it  can  be  improved,   bring- 
ing it  into a form very similar to equation  (1).     Substitute 
for b  in equation   (32),   obtaining 

EL *   (27rro2^/3^) [exp(3>£e/2A)   - 1 

= Tfv    a "   o exü(3>^e/2A)   -1 
•••-*■ '' -''  *   ~ i • 

yyj^K 
or 

\ = JX rQ
2ae ["exp(3^e/2X)   -1 

L       3;£e/2\ 
(33) 

If the factorTTa la identified with 27TY of equation (Xj, 
this expression is similar to equation (1) except for the 
factor in brackets.  This factor is of the form 

f(z)   =  GXT)k( z) -1 J /* z. — ^ — ,       j *jr  v — ,  —  j / ..-x — 7 I ID 

where z = e/d, andoc = 3>£d/2\ = 0.0516 for the 3" A.P. K-79 
projectile.  f(z) may be tabulated for various plate-thickncs; 
es: 

e,in_ q z  j exp (a z) -1 !   f (z) 

1 
2 
3 
ZL —r 

5 

0.333 
0.667 
1.000 
1*333 
l!667 

0.0172 
0.0344 
0.0516 
0=0688 
0.0865 

0.0173 
0.0350 
0.0530 
0,0712 
0.0903 

1.008 
1.023 
1.027 
1.035 
1.044 

It is seen from this table that the factor in Dracxets in 
eciuation 03) will not produce any marked deviation from 
linearity.  The departure of the curve of equation (33) from 
linearity has been suggested in Figure 1 by fitting the point 
for e/d = 0,33 to the line L; the ordinates for the other 
values of e/d showii in the table were obtained by multiply- 
ing the corresponding ordinata» for the line L toy f(e/d)/f(0.33 
These points are shown in Fig. 1 as open circles, and the 
broken curve is drawn through them.  The agreement in the 
range of e/d from 1.6 to 1.7 is actually better than it 
appears, as the experimental poißts wore obtained on a plate 
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known, from larger caliber firing to be of exceptional quality. 

Referring to the question of the intercept of the 
curve of equation (33), as compared to the experimental 
curve of the type exemplified by equation (3), in equation 
(23) for the resistance, 

d3/dx = -A(x,e)(a + bQE) 

it  should be noted that a is treated as a constant,   the 
static ps.rt  of  the  resistance varying  only with the  variable 
area of  impression A(x,e).     The analysis  of  petailing  in 
Part  II  shows  that  the resistance  should  depend  not   only 
upon A(x,e),  but also upon the type  of failure occurring 
at the particular depth  of  penetration considered;  a  is  at 
best an expression of  the  average  static  resistance.     Equa- 
tions   of the  type   (12),   (13)   show that  a plate resists pene- 
tration as though  its  effective  thickness  is  not  e,   but 
(0  -d'3/3/r),   and  one  should   identify Tra not with 27r'Y, 
but with 

2fTY(e-3d/S/r)/e 

Thus,   the  final expression for the  limit  energy becomes 

3    =  2rXYr0
2(o-3d/8 7r-) ["oxp(Wd)-l ] L ~  fc^AJ-o   v«-^/°" 1 ^        aeyd j 

or 

mVL
2/a3 -. 7\Y(e/d -  3/8 7X )     eip(* *'e/d)-l /(tfo/d)..(35) 

When this  is  compared with equation  (3),   it  is   seen that 

7TY -   27.69 x 10S ft.~poundals/ft.3, 

whence 

Y -  3.31  x 10S  poundals/sq.ft. 

Translated into  the  usual terms,   the  yield-stress  is  thus 

Y =  1.90 x 105  Ib./sQ.in, 

Strictly speaking the coefficient of Y in equation (35) 
will depend upon the particular theory of plasticity used.» 
Bethe has shown that if the theory of von ilises is employed, 
instead of that of Ko.hr (which, he used in deriving equation 
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(1)), "the energy expression involves not K Y, but 1.15 TX Y. 
Yith this modification the value of Y obtained by comparison 
with experiment would be 

Y - 1.65 x 105 lb./sq.in. 

This value of the yield stress is about twice the value 
obtained for armor steels in static tension tests. 

In static tension tests, the yield stress is 
found at the onset of plastic yielding.  Normally the change 
in yield stress resulting from work hardening is not determin- 
ed, but it is considerable.  In the penetration of armer 
work hardening will occur at an early stage in the expansion 
of the hole, and the mean yield stress should certainly be 
well above the usual test.  Furthermore, the high rates of 
strain during projectile impact will result in higher values 
of the yield stress than those found in the usual engineer- 
ing tests.  Some data on this speed effect are given in 
reference (1); experiments now underway under the auspices 
of Division 2  of  the National Defense Research Committee 
should provide further information on this point, 

"fork hardening and the effect of rate of strain 
on the yield stress will modify Bethe's theory of thin 
plates.  In his theory the plate thickens around the impact 
hole, in such a way that at any radius r within a certain 
value the thickness of plate h at that r is given by a 
formula of the type 27rrh = const.  This formula is designed 
to apply to a static penetration with a constant yield 
stress, and results from the fact that every elementary ring 
in the armor must have equal and opposite forces acting upon 
its inner and outer surfaces; as the pressure in the plastic 
region is fixed by the yield stress, the outer and inner 
surface of every elementary ring must be equal.  However, 
hardness patterns taken around icpaot holes show that the 
hardness is greatest near the hole, falling off into the 
body of the plate; presumably the yield stress varies in a 
similar manner.  This variation in yield stress will make 
it unnecessary for the thickness to increase so rapidly as 
one proceeds from the body of the plate towards the impact; 
the condition 27T'rh = const, is replaced by the condition 
27CrhY = const., where Y is now a variable.  This formula 
will apply only in static penetrations; in dynamic pene- 
trations where the plate material is being accelerated, the 
force pressing outward on the inside of any elementary ring 
must exceed the inward force on the outside of the ring. 
In consequence one does not expect a plate to thicken as . 
much around an impact hole as in Bethe's thin-plate theory, 
a point in agreement with the observation of actual impacts. 
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IV  TEE PPIlSTlh.TION OF THIN ^LATFS. 

The theory of Part II applies only to plates thicker 
then a certain critical value. Below the critical thickness 
the plate fails essentially by petalling, the expanding-hole 
mechanism of Be the not being present at all.  Vvhile in such 
thin plates dishing normt.lly extends for some distance out 
from the impact, the major deformation occurs near the hole. 
Provisionally it may he supposed that equation (6) applies, 
where the thickness t is now the entire plate-thickness e_, 
and the v;ork of petalling is the limit energy: 

PL = 27tY(7rr0e
2/3)       .....     (36) 

This expression is quadratic in e, and gives zero energy 
at zero e/d, as should be the case.  This curve should join 
that of the linear expression (12), or its equivalent 

\  - 2 7CY (rQ
2e - ITJ/W) 

at some value of e, the two being tangent at the point of 
intersection.  The value of e is found by solving simul- 
taneously. 

2 7TY(7rr0e
2/3) = 2TTY(r0

2e - 3r0
3/47T), 

which reduces to 

(2Te)2 - 2(27Te).(3ro) + (3rQ)
2 ^ 0. 

This equation has a double root, 

e ■=  3r0/27T, 

agreeing with equation (11), 

or e/d = 3/477"= 0.239   .....     (37) 

Figure 2 is a graph of the specific limit energy 
for 3" Common Hark 3 projectiles versus thin homogeneous 
plate at 0° obliquity; these projectiles have the same 
ogival radius as the 3:i A.P. I"-79 projectile.  The linear 
graph for the I>79 projectile against thicker plate is 
shown as the dashed line.  The graph drawn in for the 3:; 

Commons is the least-squares parabola for the plotted points. 
The closest approach of the two graphs is at e/d = 0.2y$.     The 
discrepancy between the experimental giaph and the calculation 
of equation (36) may be interpreted as due to the neglect in 

L  the energy of dishing. 
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The slopes of the graphs of ET VS. e_ are obtained 

dEL/de - 4 7T'2Yr0e/3 

(from equation (36)), and 

d2L/de = 27TYr0
2 

from the linear graph.  If in the equation for the slope of 
the parabola the value of e from equation (37), is substituted, 
it is seen that the slopes are the same - i.e., the thpoet- 
ical curves are tangent at the point of intersection, 

V.       DISCÜ53I0N. ■ 

Host firing at armor plate is done for proof, and 
limits are not determined, except accidentally.  If a limit 
velocity is determined for a plate, it is usually at an 
obliquity and value of e/d approximating those expected In 
service - if the value of e/d is small, 9 is large, and vice 
versa.  It is only recently that accurate limits have been 
found, with a single type of projectile at a fixed obliquity, 
covering the entire practicable range of e/d.  This series 
of determinations provides a much more satisfactory basis for 
theoretical discussion than has hitherto been available. 

Various empirical formulas have been proposed in 
the past for the calculation of plate limits; dimensional 
considerations have suggested the type form: 

l/2mV2 =jiYend3"n, 

where/a is dimensionless, and n is chosen to give the best 
fit to the available experimental data.  In terms of 
specific energy, this formula becomes 

mV 2/d3 =d (e/d)n, 

whole     cx    is  now  a   constant  having  the  dimensions   of   stress. 
It  is  clear that dimensional considerations do not  restrict 
such  empirical formulas  to  a  single  term,   and  that  in general 
one  could write 

nv72/d3  =  X oL (e/d)n. 
i» ' n    n 

Equations of the type of equation (3) represent the simplest 
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UNCLASSIFIED 
case of an empirical formula with more than one term. A 
study conducted at the Naval Proving Ground based upon date 
obtained at the Naval Proving Ground, the Naval Research 
Laboratory, and the Prlnoeton Range has established the type 
formula 

mVL
2/d3 = -cx+(3(e/d)            (33) 

for considerable ranges of e/d,  and obUquitie.s  of 30° or less. 
This type form i3  unquestionably superior to the  older formulas 
of the del.Iarre type, as far as the attack of homogeneous armor 
ir concerned. 

The theory presented in this report provides a 
rational explanation of equation  (33),  and in addition pre- 
dicts the breakdown of this equation at low values of  e/d, and 
the smaller deviations from equation  (33) at large values of 
e/d.    It should be noted that no ajd hoc hypotheses were intro- 
duced into the theory to attain numerleal agreement with 
equation  (3)  or the slope  of equation  (4).     The assumed petal- 
thickness, which determines the intercept on the e/d axis in 
equation (3), was found by a minimizing principle;  the mean 
value of-3/and the  size of the worked region, which determine 
the  slope to be used in equation  (4), were  found geometrically 
and from Bethe's theory. 

The thin-plate form of Bethe's expanding-hole 
theory has been used in preference to his thick-plate theory, 
even for plates of  e/d> 1;  this dsoice is based upon studies of 
etchings and hardness patterns of  sections through impacts, 
which studies will be presented in a subsequent report.     These 
studies show that the type of displacement within the  plate and 
the extent of the work hardened region are  consistent only with 
the thin-plate mechanism,  for plates corresponding to e/d valueo 
up to 1,4» 

Certain additional consequences of  the  theory may be 
not ed: 

1. As the resistance function (ecuation (ü3))  increases 
vdth the striking energy, a projectile,   Darely able to pene- 
trate a given plate at a given striking velocity without marked 
deformation,  may be expected to experience greater stresses at 
higher impact velocities,   so may be broken when striking the 
plate at velocities well above the limit.    A qualitative 
explanation of the phenomenon of  shatter is thus obtained.    A 
general  quantitative discussion is not  possible,  as shatter 
must be determined as much by the quality of the  projectile 
considered as by the mechanical lavs of penetration. 

2. In extension of item 1 above,  one can understand why 

UHCiASStFlEO 
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the probability of shatter at the limit vail be greater in 
the attack upon thicker plates; the striking velocity Tor 
penetration being greater for thick plates than for thinner 
plates, the initial resistance experienced by the projectile 
will be greater in attacking thick plates, and nay set up 
sufficient stresses to shatter the projectile. 

3. The resistance-function increases linearly with V; 
the shorter the ogive, the larger the value of Y,   and the 
greater the resistance encountered on impact.  One would expect 
a blunt projectile to be more likely to shatter on a heavy plate- 
than a long, pointed projectile - an observation in accordance 
with the facts, as long as the obliquity is near zero, 

4. The projectile sets up both forward and lateral 
components of force as it penetrates the plate,  with pro- 
jectiles of conventional form against thicker plates, the for- 
ward ( components will set up shearing stresses,"but the '" rigid- 
ity ' of the plate will be sufficient to prevent the shearing 
out of a punching, and the penetration will proceed essentially 
according to the mechanism envisaged in this report.  However/ 
if a blunter projectile is used or if the conventional pro- 
jectile is used against a thinner plate, the shearing stresses 
may be great enough for the plate to fail by punching. 

.1 
To be more concrete, the 3" A.?. M-79 projectile 

with a simple 5" radius ogive, will fierce (as opposed to 
punching) plates of any thickness yet fired at (e/d values up 
to about 1.6). A 3" projectile with a hemispherical nose- 
(lf.'5 radius ogive) will knock a punching, slightly smaller in 
diameter than the projectile, out of öny  plate it can pene- 
tratetrate without shattering.  Projectiles of intermediate 
form - having compound ogives of the type used on most 3" 
A.P. projectiles - penetrated a IV95 plate by a piercing action 
but when fired against a 01.'73 plate produced small punchings ?)■ 
front of the bluntest portion of the projectile nose, the hole 
being enlarged to the full size of the projectile by retailing. 

Punching in Class B plates has been observed only w.1 tu 
blunt projectiles - i.e., projectiles having a relatively iargj 
value of r/ , so that they experience a high initial resistance. 
Punching invariably occurs with Class A plates, where the hara 
face causes a very high initial resistance, as shown by the 
ability of Class A plate to break projectiles.  One may there- 
fore assume for purposes of investigation that punching will 
always occur in any plate, however thick, if it offers high 
enough resistance to the projectile; this high resistance may 
be a consequence of projectile form or of plate hardness, or of 
*->   r\ r\ x.-: I-* -\   v\ *~, "f" *1 r-\ n        f~*  -tf-1  "!~ V* n *-* .-.       ■+- * ,-***   -tf* ^ 4-   -* — 

5.  Experiment has shown (reference (5)) that, as long 
as punching does not occur, the limit energy of a project!?.a 
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varies in an inverse way with its length of ogive.  This is 
explained qualitatively by the decrease in the value of "■ 
as" the ogive is lengthened, which results in a lower average 
resistance to the projectile and a consequently lower Unit 
energy.  On this basis, one would expect little difference be- 
+-,veen -rojectil'es of different form against thin plates, where 
the dynamic terms are least, an expectation which is fulfilled 
see reference (5) - as long as punching does not occur. 

6.   If petals break off at the base without bending 
through a considerable angle, or if a button is thrown fron 
the bach of the plate, the energy absorbed in the beck zone 
of the plate will be less than given by equation (6), and the 
plate limit will be lower than for ductile plate of the same 
thickness. However, this explanation of the lower limit of 
brittle plate does not give any information as to why the 
plate is brittle in the first place. 

Further research on this problem should include a 
more precise method of calculating the energy of petalling, 
and a"better method of evaluating Y.       The question of dishing 
in thin plates must be dealt with, together with the associated 
question of the slopes of the graphs of ER VS. S3.  The shear- 
ing action immediately adjacent to the impact should be con- 
sidered; it might help to clear up the apparent discrepancy 
between the intercept of Figure 1 and that calculated in Part II 
and also the apparent large value of the yield stress.  Hard- 
UfciöfcS     üUX'Vej'ü    t:;nu.    cuuuillgü    u±     SCUüIUIIü    LiirOügli    XlkpCiO Üb    Ö.IÖ    iiÄ~ 
pected to provide additional data which should guide further 
researches. 
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VIII     APP3KDIX A. 

i JCFSRIKENTAL DATA. 

The determination of accurate and significant bal- 
listic data is a difficult problem.  The testing of armor and 
projectiles is very  expensive, and as the determination of an 
accurate limit velocity by a close ;'straddle" requires a con- 
siderable number of rounds, such limit determinations have 
not usually been made on all plates tested.  when funds have 
permitted a substantial number of limit determinations, 
practical considerations have dictated the conditions, which 
are chosen to approximate the values of e/d and 9 likely to 
be encountered in service.  In general, plates corresponding 
to large values of e/d are tested at low obliquities, and vice 
versa. 

In view of these conditions, it is clear that the 
first analyses of data had to be statistical in character, with 
individual limit energies departing considerably from the best- 
fitting curve.  In particular, when limit velocities and limit 
energies are being determined, variations in plate-thickness, 
obliquity of impact and projectile mass will occur from round 
to round. Variations in obliquity will be particularly hard 
to control when firing at thin plates at high obliquities, 
where the dished area around one impact hole will extend prac- 
tically to the next point of impact.  It has therefore been 
necessary to devise a means of comparing successive rounds, and 
of comparing limits on different plates of nearly the same 
thickness et obliquities differing by a few degrees. 

If projectiles are of the same form and strike the 
plate with zero yaw and do not deform, the variables affecting 
the limit velocity V^ will be the projectile mass m, the obliq- 
uity 9, the plate thickness e_, the yield stress Y of the plate, 
and the projectile diameter d.  These variables must be func- 
tionally related in some way, thus 

0   (m,VL,Y,e,d,9) = 0. 

If this function Is to be expressed explicitly, the require- 
ments of dimensional homogeneity necessitate the grouping of 
the variables in dimensionless combinations,  e/d and 9 are 
aimensionless.  mVT 

?- has the dimensions of energy; Yed2, 
which is proportional to the energy per unit volume of the 
material displaced from the projectile hole, also has the 
dim.enciond of energy, which suggests ths use of mV-^/Yed^ 
as another dimensionless combination.  Thus one may try to find 
a relation of the form 

f (mVL
2/Yed2,9,e/d) = 0, 
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or what is equivalent, 

y (mVSvL/yl/S eV^Q^/d) = 0 

This Implicit relation may be written more explicitly 

—^    = Fo(e/d,0), 
e-1-/ Äd 

where the constant YV2has been absorbed into FQ.  It is found 
by experiment that this function varies only slowly with e/d 
and m, and to that extent is suitable for comparison of dif- 
ferent rounds on different plates»  However, the variation with 
0 is rapid, and to Iron this out it has been found best to in- 
troduce a factor of cos©, which is of course dimensionless: 

F(e/d,©) = n^/SvLCOsO/e1/^ 

This function is the well-known F-coefficient developed at 
the Naval Proving Ground in 1932 and since used constantly in 
the analysis of data obtained at the Naval Proving Ground and 
elsewhere.  The F-coefficient is not a constant but varies 
slowly with e/d and ©.  It Is useful for the direct comparison 
of plates under closely similar conditions, and the average F- 
coefficient, evaluated as a function of these variables, 
serves as a valuable reference for comparisons of plate qual- 
ities over large ranges of plate thickness and obliquity, and 
as a basis for writing armor specifications. 

Earlier analyses of penetration data in terms of 
the F-coofficient were based almost entirely on values of 
e/d and 0 of principal service interest, and with a wide 
variety of projectile designs.  Hence, they are not entirely 
ad^nii^^ 1" ranee fnr> anv sine-le nrnlectile from the stand- 
point of fundamental investigation.  The development of the 
residual velocity technique for the determination of limit 
velocities, described in reference (2), has enabled the de- 
termination of limits with only one or two rounds—except at 
high obliquities where more may be required—and together 
with systematic firing at small scale X.30 and .50 caliber 
and 3") has made feasible the accumulation of sufficient 
data for the determination of accurate curves of F as a 
function of e/d and ©, over wide ranges for particular pro- 
jectiles. 

From a mechanical point of view, the limit energy 
is more significant than the limit velocity.  The specific 
limit energy is readily obtained from the F-coefficient, as 

(e/d)F2 = mVL
2cos2e/d5. 
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actual energy at higher obliquities, one would use 

(e/d)F2 sec2© = mVL
2/d3. 

Figures 1 and 2 give the experimental data for one type of 
uncapped projectile at 0°. 

In the plotting of residual energy graphs (of the 
type of equation \k))   it is found that less dispersion ic 
obtained if an F^ plot is made, using the quantities. 

Fg
2 = mVs

2cos29/ed2, 

FR
2 = mVR

2cos20/ed2, 

and F" = mV-j- "cos"0/ed" . 

The equation equivalent to (4) is then 

F_2 = qfir„2 - T?2) . 

If one or more quantities stay constant from round to round, 
they may be cancelled from this equation; for example, in the 
firing basic to the plot of Figure 3, d and cos0 were prac- 
tically constant, so the plot shows 

mVR
2  = S(mVs

2 _ mVL
2) 

e     ( e    ~"e ) 

The term specific limit energy has been introduced because the 
weight of a projectile in pounds is usually not very far from 
half the cube of its diameter in inches: 

w = d3/2. 

Therefore, 

(mVL
2/2)/(d3/2)  . 

is approximately numerically equal to the limit-energy per 
pound of projectile weight.  For projectiles of a given form, 

mV 2/d3 

is strictly proportional to the energy per pound of projectile 
weight, regardless of the units used for d.  In calcul: tions 
using the F-coefficient, d is in feet, rather than inches, and 
m is in pounds, rather than slugs, so that while (e/d)F2 -i =, «n 
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ÜNDIX B. 

OGIVE 

P,-rc 

scribed by 
the mean y 
the ogive, 

TroT-ip 

the center of 
along the arc 

gravity 
and L~ 

A simple ogive is generated by 
revolving an arc of a circle 
about its chord; in the figure, 
an arc of radius R with center 
at C is revolved about the line 
QX-.     The nose of the projectile 
will be represented by that 
half of the ogive lying tu  th? 
right of OY.  By a Theorem of 
Pappus, the area of a surf-2 •'■ 
of revolution is the product 
of the length of the revel vir. " 
arc by the circumference de- 

of the arc.  Thus, if -y* is 
is the desired lateral area of 

y  =     iyas/jas, 

rfhere the element  of arc  ds is RdQ,   and y =  RcosO  -(R-r   ) 
P.[cos9 -   (l-d/2R)l . 

Therefore fy 

y =  Jo  RCcos9   "   (l-d/2R)JEdO 

j   Ed 9 

ufalnifif -  (l-d/2R)j 

In this formula    If/.-  cos     (l-d/2R),   so  can be  found from the 
specified form of  the projectile.     Then 
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Lo  -   Z-TtBtyfaintyp-   (l-d/2R)j 

or 
,2 r L0 = 2TTR   f sin^-^cos^j    ..... (l) 

This is probo.bly the most  oonvenient  equation to use  for 
calculation,   the value  of   *//   being found and   substituted in 
the   formula.     If \jJ   is  eliminated'from equation   (1),   the 
x o r r:ul a  b e c o n o s 

L0  -   2 7TP^|(d/2R) V(4R/d)-l  - (l-d/2?J cos""1 (l-d/2R j| 
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